48 North Solutions
  • Home
  • About
    • Our Team
  • Services
    • Natural Resource Services
    • Regulatory Services
  • Featured Projects
    • Stream Restoration
    • Long-Term Biological Monitoring
    • Submarine Cables
    • Fish Exclusion
    • Renewable Energy
    • ICEX2016
  • Our News
  • Current Events
  • Contact

Current Events

DNA evidence shows that salmon hatcheries cause substantial, rapid genetic changes

2/17/2016

 
EurekAlert -

CORVALLIS, Ore. - A new study on steelhead trout in Oregon offers genetic evidence that wild and hatchery fish are different at the DNA level, and that they can become different with surprising speed.


The research, published today in Nature Communications, found that after one generation of hatchery culture, the offspring of wild fish and first-generation hatchery fish differed in the activity of more than 700 genes.
A single generation of adaptation to the hatchery resulted in observable changes at the DNA level that were passed on to offspring, scientists reported.

This research was conducted at Oregon State University in collaboration with the Oregon Department of Fisheries and Wildlife. Scientists say the findings essentially close the case on whether or not wild and hatchery fish can be genetically different.

Differences in survival and reproductive success between hatchery and wild fish have long offered evidence of rapid adaptation to the hatchery environment. This new DNA evidence directly measured the activity of all genes in the offspring of hatchery and wild fish. It conclusively demonstrates that the genetic differences between hatchery and wild fish are large in scale and fully heritable.

"A fish hatchery is a very artificial environment that causes strong natural selection pressures," said Michael Blouin, a professor of integrative biology in the OSU College of Science. "A concrete box with 50,000 other fish all crowded together and fed pellet food is clearly a lot different than an open stream."

It's not clear exactly what traits are being selected for, but the study was able to identify some genetic changes that may explain how the fish are responding to the novel environment in the hatchery.

"We observed that a large number of genes were involved in pathways related to wound healing, immunity, and metabolism, and this is consistent with the idea that the earliest stages of domestication may involve adapting to highly crowded conditions," said Mark Christie, lead author of the study.

Aside from crowding, which is common in the hatchery, injuries also happen more often and disease can be more prevalent.

The genetic changes are substantial and rapid, the study found. It's literally a process of evolution at work, but in this case it does not take multiple generations or long periods of time.
"We expected hatcheries to have a genetic impact," Blouin said. "However, the large amount of change we observed at the DNA level was really amazing. This was a surprising result."

With the question put to rest of whether hatchery fish are different, Blouin said, it may now be possible to determine exactly how they are different, and work to address that problem. When the genetic changes that occur in a hatchery environment are better understood, it could be possible to change the way fish are raised in order to produce hatchery fish that are more like wild fish. This research is a first step in that direction.

Original Story

Comments are closed.

    News

    We want to share the news we're reading with you. From the Pacific Northwest and beyond, we're interested in what's happening in our environment. 

    Archives

    January 2023
    December 2022
    October 2022
    July 2022
    June 2022
    April 2022
    January 2022
    November 2021
    October 2021
    April 2021
    January 2021
    December 2020
    October 2020
    November 2019
    August 2019
    July 2019
    March 2019
    January 2019
    December 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015

    Categories

    All
    Arctic
    Climate Change
    Marine
    Marine Renewable Energy
    Regional
    Restoration
    Salmon
    Underwater Noise
    Water
    World

    View my profile on LinkedIn

    RSS Feed

48 NORTH

​About
Contact Us
Privacy Policy 



© COPYRIGHT 2022. ALL RIGHTS RESERVED
Photos public domain or property of 48 NORTH staff
  • Home
  • About
    • Our Team
  • Services
    • Natural Resource Services
    • Regulatory Services
  • Featured Projects
    • Stream Restoration
    • Long-Term Biological Monitoring
    • Submarine Cables
    • Fish Exclusion
    • Renewable Energy
    • ICEX2016
  • Our News
  • Current Events
  • Contact